Some Results on Chromatic Number as a Function of Triangle Count
نویسندگان
چکیده
منابع مشابه
On the Chromatic Number of Simple Triangle-Free Triple Systems
A hypergraph is simple if every two edges share at most one vertex. It is trianglefree if in addition every three pairwise intersecting edges have a vertex in common. We prove that there is an absolute constant c such that the chromatic number of a simple triangle-free triple system with maximum degree ∆ is at most c √ ∆/ log ∆. This extends a result of Johansson about graphs, and is sharp apar...
متن کاملSome Results on Chromatic Polynomials of Hypergraphs
In this paper, chromatic polynomials of (non-uniform) hypercycles, unicyclic hypergraphs, hypercacti and sunflower hypergraphs are presented. The formulae generalize known results for r-uniform hypergraphs due to Allagan, Borowiecki/ Lazuka, Dohmen and Tomescu. Furthermore, it is shown that the class of (non-uniform) hypertrees with m edges, where mr edges have size r, r ≥ 2, is chromatically c...
متن کاملTwo results on the digraph chromatic number
It is known (Bollobás [4]; Kostochka and Mazurova [13]) that there exist graphs of maximum degree ∆ and of arbitrarily large girth whose chromatic number is at least c∆/ log ∆. We show an analogous result for digraphs where the chromatic number of a digraph D is defined as the minimum integer k so that V (D) can be partitioned into k acyclic sets, and the girth is the length of the shortest cyc...
متن کاملon some bayesian statistical models in actuarial science with emphasis on claim count
چکیده ندارد.
15 صفحه اولThe fractional chromatic number of triangle-free subcubic graphs
Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 ≈ 2.909.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2019
ISSN: 0895-4801,1095-7146
DOI: 10.1137/17m115918x